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Abstract
In this paper, we study a set of functions, defined on an interval of finite
width, which are orthogonal and which reduce to the sinc functions when the
appropriate limit is taken. We show that these functions can be used within a
variational approach to obtain accurate results for a variety of problems. We
have applied them to the interpolation of functions on finite domains and to the
solution of the Schrödinger equation, and we have compared the performance
of the present approach with others.

PACS numbers: 03.30.+p, 03.65.−w

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The main goal of this paper is to study the application of a set of orthogonal functions to
the solution of a wide class of problems, such as function interpolation and the numerical
solution of differential equations, including the Schrödinger equation. These functions, which
are defined on a finite domain, have appeared in a number of works under different names:
for example, Meyer calls them ‘trigonometric interpolation functions’ in [1], Schwartz relates
them to a Fourier basis in [2], Baye and Heenen call them ‘diffraction-like Lagrange functions’
in [3], while they appear as ‘psinc’ in [4]. More recently Amore has referred to these functions
as ‘little sinc functions’ (LSF) in [5], where they have been used to obtain an alternative
representation for non-local operators and path integrals. In this paper, we will adopt this last
convention. The relation of these functions to usual sinc functions is discussed in [6].

In recent years, Baye and collaborators have used these and other functions for the solution
of the Schrödinger equation with several different potentials, and they have produced accurate
numerical results both for the energies and wavefunctions [3, 7, 8]. Collocation methods
based on ordinary sinc function have been applied in the literature to a large class of problems,
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which include those mentioned above (see, for example, [9]), and they have been put on firm
mathematical grounds [10]. Examples of applications of the sinc functions can be found
in [11–16], among others. Recently, one of the authors has shown that the sinc collocation
methods can be optimized by using a variational approach [17] based on the principle of
minimal sensitivity (PMS) [18]. This optimization allows one to obtain the highest precision
with a given number of grid points, and can be particularly valuable in problems that require
intense numerical calculation.

In this paper, we wish to discuss the general properties of the LSF, their relation to sinc
functions and we extend the variational results of [17] to these functions.

This paper is organized as follows. In section 2, we describe the general properties of the
usual sinc functions, defined on the real line. In section 3, we derive an expression for the
LSF and discuss their properties. In section 4, we solve the Schrödinger equation with two
different potentials and compare numerical results obtained with the usual sinc functions and
LSF. Finally, in section 5 we draw our conclusions.

2. Sinc functions

In what follows we outline some of the basic properties of the sinc functions, defined as

Sk(h, x) ≡ sin(π(x − kh)/h)

π(x − kh)/h
, (1)

for every k ∈ Z, uniform grid spacing h and x ∈ R. The sinc function for a given value of the
index k is peaked at xk = kh, where it equals unity, and vanish at the other points xj = jh,
with j �= k and j ∈ Z.

From the integral representation

Sk(h, x) = h

2π

∫ +π/h

−π/h

e±i(x−kh)t dt, (2)

we easily derive the normalization factor

I1 ≡
∫ +∞

−∞
Sk(h, x) dx = h, (3)

and the orthogonality property

I2 ≡
∫ +∞

−∞
Sk(h, x)Sl(h, x) dx = hδkl. (4)

It is worth noting that equation (2) defines a Dirac delta function in the limit h → 0.
A function f (z) analytic on a rectangular strip in C centred on the real axis can be

approximated in terms of sinc functions as [10]

f (x) ≈
+∞∑

k=−∞
f (kh)Sk(h, x), (5)

which together with the normalization factor can be used to approximate the definite integral∫ +∞

−∞
f (x) dx ≈ h

∞∑
k=−∞

f (kh). (6)

It is not difficult to derive simple expressions of the derivatives of sinc functions in terms
of the same sinc functions:

d

dx
Sk(h, x) =

∞∑
l=−∞

c
(1)
lk Sk(h, x), (7)



Variational collocation on finite intervals 13049

where

c
(1)
kl ≡

∫ +∞

−∞
Sl(h, x)

d

dx
Sk(h, x) dx =

{
0 if k = l
1
h

(−1)k−l

k−l
if k �= l.

(8)

For the second derivative we have

d2

dx2
Sk(h, x) =

∞∑
l=−∞

c
(2)
lk Sk(h, x), (9)

where

c
(2)
lk ≡

∫ +∞

−∞
Sl(h, x)

d2

dx2
Sk(h, x) dx =

{− π2

3h2 if k = l

− 2
h2

(−1)k−l

(k−l)2 if k �= l.
(10)

General expressions for higher order derivatives are also available [16]:

c
(2r)
lk ≡ (−1)l−k

h2r (l − k)2r

r−1∑
k=0

(−1)k+1 2r!

(2k + 1)!
π2k(l − k)2k (11)

c
(2r)
ll ≡

(π

h

)2r (−1)r

2r + 1
(12)

c
(2r+1)
lk ≡ (−1)l−k

h2r+1(l − k)2r+1

r∑
k=0

(−1)k
(2r + 1)!

(2k + 1)!
π2k(l − k)2k (13)

c
(2r+1)
ll ≡ 0, (14)

with r = 1, 2, . . ..

3. Little sinc functions

We will now derive the set of LSF. We consider the orthonormal basis of the wavefunctions
of a particle in a box with infinite walls located at x = ±L:

ψn(x) = 1√
L

sin

(
nπ

2L
(x + L)

)
, n = 1, 2, 3, . . . (15)

and define

δN(x, y) = CN

N∑
n=1

ψn(x)ψn(y)

= CN

4L

{
sin

(
(2N+1)π(x−y)

4L

)
sin

(
π(x−y)

4L

) − (−1)N
cos

(
(2N+1)π(x+y)

4L

)
cos

(
π(x+y)

4L

)
}

, (16)

where CN is a constant to be specified below.
Because of the completeness of the basis {ψn(x)} on x ∈ [−L, +L] we have

lim
N→∞

δN(x, y)

CN

= δ(x − y). (17)

For reasons that will soon become clear, we set CN = 2L
N

and select even values of N.
To simplify the notation h ≡ 2L/N will denote the grid spacing, and yk ≡ 2kL

N
= kh, with

k = −N/2 + 1,−N/2 + 2, . . . , N/2 − 1, the grid points.
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Figure 1. LSF for N = 20 and k = 0.

We then define a set of (N − 1) LSF

sk(h,N, x) ≡ 1

2N

{
sin

((
1 + 1

2N

)
π
h
(x − kh)

)
sin

(
π

2Nh
(x − kh)

) − cos
((

1 + 1
2N

)
π
h
(x + kh)

)
cos

(
π

2Nh
(x + kh)

)
}

. (18)

By means of a well-known expression for the Chebyshev polynomial of the second kind
[19] one can rewrite the LSF as3

sk(h,N, x) ≡ 1

2N

{
U2N

[
cos

π

2Nh
(x − kh)

]
− U2N

[
sin

π

2Nh
(x + kh)

]}
(19)

Figure 1 shows one of these functions for N = 20.
It is not difficult to prove that the sk are orthogonal∫ L

−L

sk(h,N, x)sj (h,N, x) dx = hδkj , (20)

and satisfy,

sk(h,N, yj ) = δkj , (21)

properties that are also shared by the sinc functions.
Therefore, it is not surprising that the LSF become the standard sinc functions when

N → ∞ and h is held constant in equation (18) (note that L → ∞):

lim
N→∞

sk(h,N, x) = sin(π(x − kh)/h)

π(x − kh)/h)
≡ Sk(h, x). (22)

This property justifies the name of LSF.
Figure 2 compares two LSF for N = 40 and L = 1 with the corresponding sinc functions.

Differences between both kind of functions are appreciable only in the right plot, corresponding
to k = 19. In this case, the LSF is slightly larger than unity at the peak and its oscillations die
out faster.

3 We thank one of the referees for pointing out this relation.
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Figure 2. Comparison between the sinc functions (dashed line) and the little sinc functions (solid
line) corresponding to N = 40.

The LSF share some properties with the sinc functions, for example, we can approximate
a function f (x) on the interval (−L,L) as

f (x) ≈
N/2−1∑

k=−N/2+1

f (xk)sk(h,N, x), (23)

where xk ≡ kh.
To understand this point we can use the definition of sk(h,N, x) in terms of the

completeness relation and write equation (23) as

f (x) ≈
N∑

n=1


h

N/2−1∑
k=−N/2+1

f (xk)ψn(xk)


 ψn(x). (24)

In the limit N → ∞ (i.e. h → 0) the term in the parenthesis reduces to the integral∫ +L

−L
f (y)ψn(y)dy and the relation becomes exact

f (x) =
N∑

n=1

[∫ +L

−L

f (y)ψn(y) dy

]
ψn(x).

Similarly, one can express the derivatives of LSF in terms of LSF as

dsk(h,N, x)

dx
≈

∑
j

dsk(h,N, x)

dx

∣∣∣∣
x=xj

sj (h,N, x) ≡
∑

j

c
(1)
kj sj (h,N, x) (25)

d2sk(h,N, x)

dx2
≈

∑
j

d2sk(h,N, x)

dx2

∣∣∣∣
x=xj

sj (h,N, x) ≡
∑

j

c
(2)
kj sj (h,N, x), (26)

where the c
(r)
kj are the counterpart of the coefficients shown above for the sinc functions.

An explicit calculation yields

c
(1)
jj = π

4L
tan

(
jπ

N

)
(27)
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c
(1)
kj = (−1)k−j π

4L

(
cot

(
(j − k)π

2N

)
+ tan

(
(j + k)π

2N

))
(28)

and

c
(2)
jj = − π2

24L2

(
1 + 2N2 − 3 sec2

(
jπ

N

))
(29)

c
(2)
kj = −(−1)j−k π2

8L2

cos
(

jπ

N

)
cos

(
kπ
N

)
cos2

(
π

2N
(j + k)

)
sin2

(
π

2N
(j − k)

) . (30)

Because of equation (22) these matrices reduce to the usual sinc expressions given in the
preceding section when N → ∞.

It is straightforward to generalize equation (18), defined in (−L,L), to an arbitrary
interval (a, b):

s̃k(h,N, x) ≡ sk

(
h,N, x − a + b

2

)
. (31)

In this case, the points of the grid are given by

xk = 2Lk

N − 2
+

a + b

2
. (32)

In order to apply sinc collocation on a finite interval one commonly maps the real line
onto [a, b] [10] by means of the conformal transformation

φ(z) = log

(
z − a

b − z

)
. (33)

This map carries the eye-shaped region

DE =
{
z = x + iy :

∣∣∣∣arg

(
z − a

b − z

)∣∣∣∣ < d � π

2

}
(34)

onto the infinite strip

DS =
{
w = u + iv : |v| < d � π

2

}
. (35)

Under the inverse transformation z = φ−1(w) the points of the uniform grid on the
real axis, given by uk = kh, are mapped onto the non-uniform grid defined by the points
xk = (a + b ekh)/(1 + ekh).

In this case, the sinc functions are mapped onto

Sk(h, x) ≡ sin(π(φ(x) − kh)/h)

π(φ(x) − kh)/h
, (36)

which equals unity at x = xk . Consequently, it is possible to approximate a function in the
interval (a, b) as

f (x) ≈ f (x) =
+N∑

k=−N

f (xk)Sk(h, x). (37)

The LSF, on the other hand, apply directly to a finite domain. We can test the performance
of the LSF on an example selected from [14]:

f (x) = 2x2 + x − 3x3, (38)

where 0 � x � 1 and f (0) = f (1) = 0. Figure 3 compares the logarithmic error
�(x) ≡ log10|f (x) − f (x)| for both kind of functions. The solid curve corresponds to 21
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Figure 3. Error in the interpolation of f (x) in equation (38) using 21 functions.

LSF, whereas the other three curves correspond to the same number of conformally mapped
sinc functions with spacing h = 1/4, 1/2 and 1, respectively. The LSF produce smaller errors
and offer the advantage of a uniform grid.

Stenger originally introduced sinc methods for the numerical solution of differential
equations [11]. Sinc-Galerkin and sinc collocation methods are particularly useful in dealing
with these problems since they converge exponentially even in the presence of boundary
singularities. It is not our purpose to generalize all the known mathematical results from
the sinc functions to the LSF; however, we assume that both kind of functions share similar
properties and simply compare our LSF results with those provided by the conformally mapped
sinc functions.

We consider example 4.1 of [13], that is to say, the inhomogeneous differential equation
(note a typo in [13], where the term 69x should read 62x)

−u′′(x) + u′(x) + u(x) = (
4

25

)2
(x4 − 2x3 − 29x2 + 62x + 38), (39)

with the boundary conditions u(−1) = u(4) = 0. The exact solution to this equation is

ueact(x) = (
4

25

)2
(x + 1)2(x − 4)2. (40)

We look for a numerical solution in terms of our LSF as

uLS(x) =
N/2−1∑

k=−N/2+1

uksk(h,N, x − 3/2), (41)

where the coordinate shift (x − 3/2) follows from equation (31) with a = −1, b = 4
and 2L = b − a. The coefficients uk are obtained by substitution of the ansatz (41) into
equation (39).

Figure 4 shows global and local errors defined, respectively, as

�G(N) ≡ log10

∣∣∣∣
∫ 4

−1
(uexact(x) − uLS(x))2 dx

∣∣∣∣
= log10

∣∣∣∣∣∣
∫ 4

−1
u2

exact(x) dx − h

N/2−1∑
k=−N/2+1

u2
k

∣∣∣∣∣∣ (42)
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Figure 4. Global (crosses) and local (square) errors (42) and (43), respectively, for the solution of
equation (39) in terms of (N − 1) LSF.
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Figure 5. Comparison between the exact solution uexact(x) (solid line) and the approximations
obtained using LSF with N = 4, 6, 10.

�L(N) ≡ log10|uexact(3/2) − uLS(3/2)|. (43)

Note that at large N the errors appear to decay exponentially. Unlike [13] no domain
decomposition was required to solve this problem. Figure 5 compares several approximations
uLS(x) with the exact solution uexact(x).

4. The Schrödinger equation

As mentioned in the introduction, sinc collocation methods have been used to obtain accurate
numerical solutions to the Schrödinger equation. In this section, we wish to extend the
variational approach and the results of [17] to our LSF and generalize the variational method
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to include potentials with both bound and unbound states. To simplify this presentation we
begin with potentials supporting only bound states.

4.1. Potentials that support only bound states

We consider the one-dimensional Schrödinger equation

− h̄2

2m

d2ψn(x)

dx2
+ V (x)ψn(x) = Enψn(x) (44)

on an interval (a, b), which can be either finite or infinite. The wavefunctions ψn(x) obey the
boundary conditions ψn(a) = ψn(b) = 0, which grant that there will be only bound states.

If we express the wavefunctions in terms of our LSF, then equations (23), (26) and (30)
allow one to derive the following matrix representation of the Hamiltonian operator

Hkl = − h̄2

2m
c
(2)
kl + δklV (kh). (45)

This equation is similar to equation (8) of [17], except for the form of the matrix c(2). Once
the spacing h of the grid is fixed, then the (N × N) matrix HN for a manifold of N LSF can
be diagonalized. In this way, one obtains an approximation to the first N eigenvalues and
wavefunctions of the Schrödinger equation (44).

The precision of the approximate results obtained by diagonalization of the Hamiltonian
matrix (45) depends crucially on both the number of LSF as well as on the grid spacing. In
fact, although a small spacing can help to increase the resolution, if the number of the sinc
functions is not large enough, the approximation will not be able to grasp the natural scale of
the problem and the overall precision will be poor. On the other hand, a large spacing will
certainly provide poor results, because the details of the problem will not be resolved. Based
on these observations it is easy to convince oneself that there must exist an optimal spacing for
a given number of functions. Finding this optimal spacing will allow one to reach sufficiently
accurate results with a relatively small number of grid points.

It was found earlier [17] that an optimal spacing can be obtained by straightforward
application of the PMS to the trace of the (N × N) Hamiltonian matrix TN(h) = T r [HN ].
In fact, given that the trace of a Hamiltonian is invariant under unitary transformations, and
that in the limit h → 0 it will be independent of h, then it is reasonable to obtain such optimal
spacing from the solution of the equation

d

dh
TN(h) = 0. (46)

Such property was invoked earlier when using a basis of harmonic-oscillator wavefunctions
depending on an arbitrary scale parameter [20]. Therefore, the optimal value of h is found by
numerically solving a single algebraic equation, a modest computational task. In other words,
the interval length L appearing in LSF is treated as a variational parameter.

Strictly speaking, since equations (23) and (45) are only approximate, small violations of
the variational principle can be expected. These violations, however, will be arbitrarily small
as the number of points in the grid is increased: this explains the success of the approach
of [17].

Schwartz has given an expression for the optimal grid spacing, derived from the behaviour
of the wavefunction at large distances [2]. In what follows we compare Schwartz’s expressions
[2] for the polynomial potentials V (x) = xs/s with the result provided by the application of
the PMS, discussed above.
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We consider the kinetic and potential contributions to the trace TN separately. The former
is given by

KN = − h̄2

2m

N/2−1∑
k=−N/2+1

c
(2)
kk = h̄2π2

48mL2

N/2−1∑
k=−N/2+1

(
1 + 2N2 − 3 sec2

(
kπ

N

))
.

For large N we can expand the secant in the sum around N/2 and −N/2, where this term
dominates and then perform the sum. Following this procedure one obtains a quite accurate
approximation

KN ≈ h̄2π2

24mL2

[
− 1 + N2(N − 1) − 3N2

π2
H

(2)
N
2 −1

]
≈ h̄2π2

24mL2

(
N3 − 3N2

2
− 1

)
,

where H(s)
n ≡ ∑n

k=11/ks is the generalized harmonic number. Note that limN→∞ H
(2)
N
2 −1

=
ζ(2) = π2/6.

The contribution of the potential to the trace for s even is

VN =
N/2−1∑

k=−N/2+1

V (xk) ≈ 1

h

∫ +L

−L

V (x) dx = NLs

s(s + 1)
. (47)

Note the different dependence of the kinetic and potential terms upon the length parameter
L. The PMS yields the optimal value

LPMS ≈
[

h̄2π2

24mN
(s + 1)(2N3 − 3N2 − 2)

]1/(s+2)

(48)

from which it follows that

hPMS = 2LPMS

N
≈ 2

N

[
h̄2π2

24mN
(s + 1)(2N3 − 3N2 − 2)

]1/(s+2)

(49)

exhibits the same N-dependence as Schwartz’s equation (18) [2] for the chosen potentials. Note
that the physical solution of the Schrödinger equation with a potential V (x) = xs/s behaves
asymptotically as ψ(x) ≈ e−cxp

where p = s/2 + 1, for |x| 	 1. We have also verified
numerically that our analytical expression describes quite accurately the true behaviour of
hPMS even for moderate values of N.

In particular, after setting h̄ = m = 1 and s = 2, which corresponds to the harmonic
oscillator, our formula reduces to

hPMS ≈
√

2π

N

[
1 − 3

2N
− 1

N3

]1/4

≈
√

2π

N
, (50)

which is precisely Schwartz’s equation (22) [2] after identifying N = 2NSchwartz. It is quite
suggestive that hPMS is similar to the value of h obtained by Schwartz from the asymptotic
behaviour of the wavefunction. In the case of the quartic oscillator (s = 4) we obtain

hPMS ≈
[

80π2

3N4

]1/6 [
1 − 3

2N
− 1

N3

]1/6

≈ 2.5315N−2/3, (51)

that is quite close to Schwartz’s equation (23)

hSchwartz =
(

25/6π

N2
Schwartz

)1/3

≈ 1.78N
−2/3
Schwartz = 2.8256N−2/3. (52)

Using our formula for the ground state we have obtained an error that decays exponentially
as � ≈ e−0.95N , compared with the � ≈ e−1.32N of equation (25) of [2]. Note that while
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Figure 6. Error in the ground-state energy of the potential (53) using N = 10, 20 and 30, as a
function of the parameter L. The plus and square symbols correspond to the PMS and modified
PMS conditions, respectively.

Schwartz’s result is limited to a specific class of potentials the extension of the PMS to more
general potential poses no problem.

As a further test of our method we apply it to the first example in [7], i.e the harmonic
oscillator with h̄ = 1,m = 1/2 and ω = 2. Using a Cartesian mesh, Baye and Heenen reported
errors smaller than 10−3 for the first three eigenvalues and N = 10. On the other hand, our LSF
approach with N = 10 (which corresponds to 9 sinc functions), and a grid spacing optimized
according to equation (46), yields errors (Eexact − Eapprox) of −4.86 × 10−6, 1.2 × 10−4 and
−1.6 × 10−3 for the same cases.

The authors of [7] also observe that for N = 50, the high eigenvalues become very
sensitive to the value of h, and that the variation of the 30th eigenvalue with respect to h
presents a marked minimum around h = 0.35. It is remarkable that the PMS condition
for N = 50 yields LPMS = 8.93, corresponding to hPMS = 2LPMS/N ≈ 0.357, which is
extremely close to the value quoted by Baye and Heenen. It is worth noting that while the
optimal value of h quoted by Baye and Heenen is the result of an empirical observation, the
almost identical value of h given by the PMS is just the numerical solution of the algebraic
equation (46), which requires a negligible computer time.

As a second example of application of the PMS to the LSF collocation method we consider
the anharmonic potential

V (x) = x2 + x4 (53)

and assume that h̄ = 1 and m = 1/2 in the Schr̈odinger equation. This example was also
studied by Baye and Heenen [7] who obtained the optimal values h = 0.55 for N = 10, and
h = 0.2 for N = 50 using a Cartesian mesh, which is somehow related to the LSF. Figure 6
shows the error

∣∣Eexact
0 − E

approx
0

∣∣ as a function of the parameter L for three different values of
N (remember that the number of LSF in the expansion is N − 1). The plus symbols in the plot
correspond to the predictions of the PMS condition, which generally fall close to the minimum
of the curve, while the square symbols correspond to the solutions of a sort of empirical PMS
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Figure 7. Global error σ ≡ ∑18
n=0 |E(20)

n − E
(60)
n | for the potential V (x) = x4/4.

condition, obtained by minimizing the modified trace

T̃N(h) = TN(h) − N − 2

2N

∑
k

V (xk). (54)

with respect to L. We remark that this condition is empirical and specifically Taylored for the
potential (53). The better behaviour of the modified PMS condition for just one state (as in
figure 6) should not confuse the reader. It must be kept in mind that the PMS minimizes a
sort of global error for all the states in the chosen manifold. In order to appreciate this point
clearly, figure 7 shows the global error σ = ∑N−1

n=0

∣∣E(N)
n − E(exact)

n

∣∣ as a function of L for
the potential x4/4 and N = 20. Note that in this case the PMS condition yields the minimal
error. The exact energies E(exact)

n were simply chosen to be those given by the method at higher
order: E(60)

n .
The accuracy of the present calculations is greater than that obtained earlier for the same

problem [7], where the authors report errors of the order of 10−5 and 10−12 for N = 10 and
N = 50, respectively. Figure 6 shows that the curves with different values of N overlap in the
region of small L, which suggests that the approach may not be taking into account the large-L
region correctly.

4.2. Potentials supporting bound and unbound states

In what follows we try and show that the LSF are suitable for the treatment of bound states of
potentials that also support unbound states. The application of the PMS condition to potentials
with both discrete and continuous spectra is not straightforward. The potentials treated in the
preceding section increase with the coordinate and therefore the matrix representation of those
potentials increase with L. Since the matrix representation of the kinetic energy decreases with
L then there is a minimum in the trace of the Hamiltonian matrix and the PMS gives a balance
between the traces of both contributions. That minimum provides the natural length scale for
the application of the method. If the potential energy tends to a finite constant value as the
coordinate increases, then there may not be a minimum and the PMS will not yield the length
scale for the application of the present approach.
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In order to overcome that problem we substitute a potential Ṽ (x) into the Schrödinger
equation that behaves exactly as the original potential V (x) in the relevant coordinate region
and increases to infinity at large distances. The error introduced by such potential substitute
will be negligible if the difference between the original and substitute potentials is appreciable
only where the wavefunctions are expected to be vanishing small. This substitution removes
the continuous spectrum but should not affect the discrete one too much. The advantage is
that we are thus able to apply the PMS condition exactly as in the preceding subsection.

Note that the substitute potential is introduced with the sole purpose of obtaining the
length scale and that we diagonalize the correct Hamiltonian matrix.

We illustrate our procedure on the Morse potential already treated earlier by means of the
Lagrange mesh method [8]:

V (r) = D[e−2a(r−re) − 2 e−a(r−re)], (55)

where D = 0.102 62, re = 2, a = 0.72, 2m = 1836 and h̄ = 1. In the case of states with
nonzero angular momentum we should add the centrifugal potential h̄2l(l+1)

2mr2 , l = 0, 1, 2, . . ..
The substitute potential Ṽ (r) is arbitrary; we can, for example, choose it to be the Taylor

expansion of V (r) around a given point, truncated at a sufficiently large order so that it is
accurate enough at small r, and at the same time satisfies limr→∞ Ṽ (r) = +∞. The expansion
of the potential about a point close to its minimum gives rise to a right branch that increases
sharply at moderate values of r. For this reason it is preferable to choose a point far to the
right of the minimum in order to obtain an auxiliary potential Ṽ (r) that accounts better for the
actual scale of the problem. The resulting auxiliary potential may be less accurate to the left of
the minimum but this inaccuracy does not affect the choice of the optimum length parameter.
For example, in the present particular case we can choose

Ṽ (r) =
20∑

n=0

1

n!

dnV

drn

∣∣∣∣
r=10

(r − 10)n. (56)

Another difficulty to take into consideration is that our LSF are defined in (−L,L),
whereas the radial coordinate is defined in (0, +∞). The obvious solution to this apparent
problem would be to follow Baye’s strategy [3], where the left boundary of the interval is
0; on the other hand, such choice would be equivalent to a shift by a proper amount of the
potential, thus bringing the boundary condition on the left point to coincide with the left point
of the LSF. Despite its simplicity, this procedure is not optimal and generally does not provide
the best results. We have found out that a more convenient strategy consists of keeping our
LSF unchanged and shifting the coordinate by given amount as V (r) → V (r + r), where r

is typically close to the minimum of the potential (the same shift should be applied to the
centrifugal energy when l > 0). The PMS applied to the shifted Hamiltonian will thus provide
the optimal scale for the application of the LSF collocation method.

One advantage of that procedure is that it maximizes the sampling of the classically
allowed region, where the bound state wavefunctions exhibit marked nonzero contributions.
Of course, in order to take into account the boundary condition at r = 0, the PMS length scale
has to be smaller than r .

Table 1 shows the errors εn ≡ E
approx
n − Eexact

n for the s, p and d states of the Morse
potential with n = 0 and n = 5. It compares the present results with those of Baye et al [8].
The last column of table 1 displays the PMS optimal values of the grid spacing, where we
have chosen r = 3.

Figure 8 shows the local error ηN(x) = |ψ(N)(x) − ψ(80)(x)| for the ground state of the
Morse potential and approximations N = 20 and N = 40. We assume that the approximation
of order N = 80 is sufficiently close to the exact wavefunction. Our results are more
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Table 1. Errors εn ≡ E
approx
n − Eexact

n for some states of the Morse potential. Powers of ten are
indicated between square brackets. Eexact

n is approximated with the energy calculated for N = 80.

l n N [8] PMS hPMS

0 0 20 3.8[−7] −3.3[−10] 0.223
40 <1[−14] 1.8[−20] 0.134

5 20 4.0[−3] 2.1[−6] 0.223
40 1.1[−9] 2.5[−14] 0.134

1 0 20 4.1[−7] −3.6[−10] 0.223
40 <1[−14] −1.6[−20] 0.134

5 20 4.4[−3] 1.5[−6] 0.223
40 1.1[−9] 2.9[−14] 0.134

2 0 20 4.5[−7] −4.1[−10] 0.223
40 <1[−14] 1.2[−20] 0.134

5 20 4.7[−3] 2.0[−7] 0.223
40 1.1[−9] 3.9[−14] 0.134

accurate than those of Baye et al [8] who essentially considered the average of η(x) over a
chosen region. The sharp drop of the error beyond a certain value of r, clearly noticeable in
figure 8, is due to the fact that our LSF reproduce the wavefunction only in a finite region
outside which η(x) is incorrectly given by the value of |ψ(80)(x)|. It is worth noting that ηN(x)

is almost uniform in the region covered by the LSF.
We have also applied our method to the one-dimensional Morse potential considered by

Wei [21]:

V (x) = D[e−2αx − 2 e−αx + 1], (57)

where −∞ < x < ∞,D = 0.0224, α = 0.9374,m = 119 406 and h̄ = 1. This problem can
be solved exactly and the energies are given by [22]

En = h̄ω

[
n +

1

2
− h̄ω

4D

(
n +

1

2

)2
]

, (58)
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where ω = √
2D/mα. As before we can improve our results by conveniently shifting the

potential on the x-axis from V (x) to V (x + x). When N = 20 and assuming x = 0 we have
found that the first-excited-state eigenvalue is reproduced with an accuracy of about 8×10−14,
which is even better than the accuracy obtained by Wei with N = 64. (Note that table 1 of
[21] omits the ground state of the model.) When N = 40 the error of our method is just
8.1 × 10−21 for the ground state.

5. Conclusions

We have discussed a class of orthogonal functions, which share some properties with the usual
sinc functions, but which are defined on finite intervals. In this paper, we have referred to these
functions as ‘little sinc functions’ (LSF). We have shown that the LSF collocation method
provides accurate approximations for a wide class of problems when it is supplemented by
the principle of minimal sensitivity (PMS) that selects an optimal grid spacing. In particular,
we have applied the LSF to the solution of the Schrödinger equation with only bound states
and with mixed discrete and continuous spectra. We have chosen benchmark models treated
earlier by other authors and in all the cases we obtained more accurate results. It seems that the
LSF collocation method is an interesting alternative algorithm for solving many mathematical
and physical problems.
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